Content magnifier demo

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.

The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples. Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers, if n is an integer greater than 2. Although he claimed to have a general proof of his conjecture, Fermat left no details of his proof, and no proof by him has ever been found. His claim was discovered some 30 years later, after his death. This claim, which came to be known as Fermat's Last Theorem, stood unsolved in mathematics for the following three and a half centuries. The claim eventually became one of the most notable unsolved problems of mathematics. Attempts to prove it prompted substantial development in number theory, and over time Fermat's Last Theorem gained prominence as an unsolved problem in mathematics.